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ABSTRACT
Deep code models (DCMs) have achieved impressive accomplish-
ments and have been widely applied to various code-related tasks.
However, existing studies show that some DCMs have poor robust-
ness, and even small noise in the input data can lead to erroneous
outputs. This phenomenon can seriously hinder the application of
these DCMs in real-world scenarios. To address this limitation, we
propose MARVEL, a mutual learning-based framework for enhanc-
ing the robustness of DCMs via adversarial training. Specifically,
MARVEL initializes two identical DCMs, one of which receives
Gaussian-distorted data and performs adversarial training, and the
other receives the clean data. Then these two DCMs work together
to not only fit the true labels but also fit each other’s internal pa-
rameters. Our intuition is that the DCM can enhance robustness by
training noisy data, while the DCM achieves accurate prediction
performance by learn the clean data. Their mutual learning enables
the DCM to balance both robustness and predictive performance.

We selected three popular DCMs, five open-source datasets, and
three state-of-the-art attack methods to evaluate the performance
of MARVEL on 45 (3×5×3) downstream tasks composed of their
combinations. Additionally, we set two of the state-of-the-art ro-
bustness enhancement techniques as baselines. The experimental
results show that MARVEL significantly enhances the robustness
of DCMs across all 45 tasks. In 43 out of 45 tasks, MARVEL outper-
forms the two baselines with an average improvement of 15.33%

∗The author is also affiliated with College of Intelligence and Computing, Tianjin
University.
†Corresponding author.
HCST: High Confidence Software Technologies.
SCS: School of Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00
https://doi.org/10.1145/3691620.3695519

and 31.88%, respectively. At the same time, MARVEL can main-
tain the inherent accuracy with an error margin within +-2.43%
compared to the original DCMs.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; • Computing methodologies→ Artificial intelli-
gence.
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1 INTRODUCTION
Over the recent years, Deep Learning (DL) has achieved impressive
results in various tasks of software engineering, including code
clone detection [19, 34, 55], functionality classification [65], vul-
nerability detection [9, 11, 35, 67, 69] and others [13, 14, 58]. Many
deep learning models such as CodeBERT [20], GraphCodeBERT
[27], UniXCoder [26], and others have been developed based on
large-scale code snippets, and according to existing work, we refer
these models as Deep Code Models (DCMs) [49, 50]. However, the
superior performance demonstrated by DCMs during the testing
stage may not necessarily translate to the equivalent level of per-
formance when confronted with real-world inputs encountered in
actual development environments [17, 61]. In practice, program
coding and design specifications are not universal, but depend on
the requirements and conventions of particular projects. Program-
ming languages only need to conform to their syntax and logic
rules in order to function. As a result, some code may introduce
potential noise for DCMs, including inconsistent identifier names
[56], redundant dead code [44], and disorganized code structures
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[49], etc. These attributes can interfere with the output results of
DCM, as they are infrequently encountered in curated training data
by researchers.

Several researchers have identified such weaknesses in DCMs
and proposed diverse adversarial attack techniques [49, 56, 57, 62,
64], aiming to emulate real-world noise through strategies like
identifier replacement, dead code injection, and equivalent structure
transformation within the code. Subsequently, these noisy data
are inputted into the DCMs, leading to erroneous outputs. For
example, the state-of-the-art attack technique [49] achieves an
average attack success rate (outputting erroneous results) of 73.04%
when targeting CodeBERT [20]. That is, when both the original
data and the noise-disturbed data are fed into CodeBERT, it is
discovered that approximately 73.04% of the predictions with noise-
disturbed data are inconsistent with the original data. This further
demonstrates that existing DCMs have the limitation of not being
robust enough in the face of real-world development scenarios. As
such, it is crucial to ensure the robustness of these DCMs.

In view of the above, many researchers work on improving ro-
bustness of DCMs and their work can be divided into two categories:
data-level approaches [16, 49, 56, 59, 62, 63] and model-level ap-
proaches [7, 21, 28, 31, 36–38]. The data-level approaches typically
begin by generating adversarial examples and subsequently em-
ploy them to iteratively fine-tune the model, thereby enhancing its
robustness [49, 56, 62]. However, these generated adversarial
examples often do not fully cover the features of real-world
noise. For instance, altering variable names represents a straightfor-
ward means of perturbing the model, nevertheless, variable names
may have diverse naming conventions, while real noise may be
more complex and varied, far beyond what model could learn from
adversarial examples. In contrast, the model-level approach does
not introduce additional training data, some existing model-level
approaches employ adversarial training [7, 28, 31, 36], while some
employ advanced network framework to enhance the robustness of
DCMs [21, 37, 38]. However, their effectiveness against multi-
ple adversarial attacks remains uncertain due to the limited
reporting of test results for only one or a few types of ad-
versarial attacks. Another point to note is that the noisy data
introduced in adversarial training will inevitably cause biases in
the expected results. These biases may lead to a decrease in the
accuracy of the DCMs. The trade-off between accuracy and ro-
bustness must be meticulously considered when conducting
adversarial training.

To address the aforementioned limitations, we propose a novel
Mutual leARning adVErsariaL method, named MARVEL. In brief,
MARVEL consists of three importantmodules, including theHidden
space Data Augmentation (HidDA), theMutual learning Adversarial
Training (MutAT), and the Mutual learning Feature Fusion (MutFF).
The HidDA simulates various noise disturbances that the input data
may face by directly injecting a certain degree of Gaussian noise for
DCM in the hidden space, and incorporates these Gaussian noises
into the model training to improve the robustness of the DCM. In
addition, MutAT inputs two sets of data, i.e., clean and noisy data,
into two same DCM respectively. The trade-off between accuracy
and robustness is maintained by learning the data distribution of
each other. The MutFF ultimately integrates the outputs of the two
DCMs and fits the true labels using a multi-layer perceptron. It is

important to emphasise that our MARVEL is not only applicable to
specific DCM, but has the potential to be applied to a wide range
of different DCMs to enhance their robustness. This feature makes
MARVEL a generic solution that can support multiple DCMs and
their downstream tasks.

In order to demonstrate the effectiveness of MARVEL, we con-
ducted an extensive evaluation on three widely used DCMs (i.e.,
CodeBERT [20], GraphCodeBERT [27] and UniXCoder [26]) and
five datasets covering three popular languages (i.e., Python, Java,
and C). For each combination of datasets and DCMs, we selected
three state-of-the-art adversarial attack methods (i.e., ALERT [56],
MHM[63] and CODA [49]) to attack the MARVEL-enhanced mod-
els. And two state-of-the-art robustness enhancement techniques
are chosen as the baselines. The degree of reduction in the attack
success rates (ASR) of these attack methods is used as a quantita-
tive indicator of robustness. The experimental results show that
MARVEL can improve the robustness of DCMs in all 45 tasks (com-
binations of three DCMs, five datasets, and three adversarial attack
methods). In 43 of 45 tasks, MARVEL surpass the baseline methods.
Compared to the baseline methods CREAM[21] and SPACE[36], our
MARVEL improves robustness by an average of 15.19% and 31.80%,
respectively. Furthermore, the strengthened DCMs by MARVEL
maintain a high level of accuracy, with an error margin within
+-2.43% compared to the original DCMs.

In summary, the main contributions of this paper can be sum-
marized as follows:

• We propose MARVEL, a robustness enhancement technique
for DCMs. It can be applied to multiple DCMs and defends
against various adversarial attacks.
• We perform an extensive evaluation in terms of the effec-
tiveness of MARVEL on 45 tasks. The results show that the
MARVEL-enhanced DCMs successfully defend against more
adversarial attacks across all tasks compared to the original
DCMs. MARVEL outperforms state-of-the-art robustness
enhancement technique on up to 43 tasks, the best of which
can improve robustness by up to 43.42%. To the best of our
knowledge, we are the first to conduct extensive experiments
using latest attack techniques to evaluate DCMs’ robustness.
• We open-sourced all our experimental data and code at
https://github.com/VMnK-Run/MARVEL, enabling future
research and replication of our findings.

2 BACKGROUND AND MOTIVATION
In this section, we provide background about DCMs and deep mu-
tual learning, and present the problem definition and the motivation
of our approach.

2.1 Deep Code Models
Deep Neural Networks (DNNs) have been widely used to process
source code and have achieved great performance in various down-
stream tasks [4, 5, 30, 55]. Recently, researchers have proposed some
transformer-based pre-trained DCMs [20, 26, 27, 40, 53, 54, 68],
through the process of pre-training on large-scale unlabelled code
corpora and fine-tuning on specific downstream task datasets, these
pre-trained DCMs have achieved state-of-the-art performance on

https://github.com/VMnK-Run/MARVEL
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tasks such as authorship attribution, vulnerability detection, code
completion [10].

Feng et al. proposed CodeBERT [20], which is the first bimodal
pre-trained model for natural language (NL) and programming lan-
guage (PL) and can handle multiple programming languages. After
that, Guo et al. proposed GraphCodeBERT [27] that uses the same
architecture as CodeBERT, but it considers the inherent structure
of code and leverages semantic-level information of code, i.e., data
flow graph (DFG), for pre-training. Both CodeBERT and Graph-
CodeBERT are encoder-only architectures. Guo et al. proposed
UniXCoder [26] which is a unified cross-modal pre-trained model
that can simultaneously support encoder-only, decoder-only, and
encoder-decoder modes.

There are many other pre-trained DCMs, including PLBART [3],
CodeT5 [54], CodeGPT [40] and so on. In this paper, wemainly focus
on the three aforementioned pre-trained DCMs (i.e., CodeBERT
[20], GraphCodeBERT [27], UniXCoder [26]), as they have already
demonstrated good performance, and investigate their robustness
in source code classification tasks such as authorship attribution,
defect prediction and functionality classification, following the
existing works [28, 49, 50].

2.2 Deep Mutual Learning
To address the need for models with fewer parameters and im-
proved efficiency, researchers have proposed model distillation [29]
that transfers knowledge from a larger teacher network to a small
student network. Different from this way, Zhang et al. proposed
Deep mutual learning (DML) [66], which employs multiple mod-
els trained simultaneously for the same goal. During the training
process, each model not only fits the true label distribution but
also leverages the learning experience of other models to further
enhance its generalization capability. In other words, each model
has two loss functions during the learning process, one is the tradi-
tional supervised loss function, which utilizes cross-entropy loss
to measure the discrepancy between the model’s predicted target
class and the true label, the other is the inter-model interactive loss
function, which employs Kullback-Leibler (KL) divergence to quan-
tify the divergence between the predicted probability distributions
of two networks. The experimental results demonstrate that DML
can effectively enhance the performance of individual models.

However, to the best of our knowledge, no prior work has investi-
gated the application of DML in the domain of DCMs. Later we will
show that combining the simple DML approach with adversarial
training can significantly enhance the robustness of DCMs.

2.3 Problem Definition
Considering source code classification tasks, given a code-label pair
(𝑥,𝑦) ∈ D and a code modelM, where D represents the test set,
𝑥 represents a code snippet, and 𝑦 represents the corresponding
correct label, M can give a probability vector for each input 𝑥 ,
where each element represents the probability thatM believes 𝑥
belongs to the corresponding label. The label with the maximum
probability value is the output ofM, donoted asM. IfM(𝑥) = 𝑦,
i.e., the code model can correctly classify the given input.

Different from existing work to improve the robustness of DCMs
[21, 31, 37, 50], our primary goal is to enhance the ability of DCMs

Figure 1: Our motivation for using deep mutual learning.

to defend against state-of-the art adversarial attacks, because these
adversarial attacks aim to simulate noise conditions that are as close
as possible to real-world development scenarios, which means the
model’s ability to defend against these adversarial attacks is a more
appropriate way to reflect its true robustness. Adversarial attack on
code aims to find 𝑥 ′ ∈ 𝜎 (𝑥) thatM(𝑥 ′) ≠ 𝑦. Here, 𝜎 is a function
that can modify 𝑥 in a way that preserves its semantic information
and satisfies the grammar constraints with the Frobenius norm con-
strained to be less than 𝜖 , and 𝑥 ′ is the adversarial example. Only
inputs thatM can correctly classify are considered following exist-
ing works [49, 56]. Our goal is to make the model able to correctly
classify not only the original data, but also the adversarial exam-
ples, i.e., successfully defend against adversarial attacks. Formally
speaking, we aim to enhanceM to obtainM′, for those samples
whereM(𝑥) = 𝑦, we hope to maintainM′ (𝑥) = 𝑦 as much as pos-
sible. Meanwhile, for the samples whereM(𝑥) = 𝑦 ∧M(𝑥 ′) ≠ 𝑦,
we hope to be able to haveM′ (𝑥) =M′ (𝑥 ′) = 𝑦. Since we focus
more on the model’s robustness to input perturbations, the samples
whereM(𝑥) ≠ 𝑦 are not the focus of our consideration. The key
focus of this paper is how to obtain a more robust modeM′ and
enhance its capability to withstand adversarial attacks.

2.4 Motivation
Existing works [56, 62] have shown that DCMs are highly sensitive
to the identifier names in code snippets. As a result, state-of-the-art
attack methods targeting DCMs typically involve renaming the
identifiers in code snippets to generate adversarial examples that
can cause the model to make errors. Existing works also incor-
porates these adversarial examples back into the training data to
fine-tune the DCMs, with the aim of enhancing the robustness of
the models. However, from the DNN perspective, code inputs are
converted into latent space representations, introducing perturba-
tions to the code inputs corresponds to injecting noise into the
model’s hidden space. This forces the model to learn stronger deci-
sion boundaries to fit the data, thereby improving its robustness.
Motivated by this, one basic idea is to directly add noise to the
hidden space. Additionally, to prevent the model from overfitting
to excessive noise, we propose a gradient-driven hidden space data
augmentation module, which adaptively injects Gaussian noise into
the model’s word embedding layer based on the gradients of the
internal parameters, in order to obtain a more robust model.

However, excessively obscuring the embedding representation
of the identifiers will affect the model’s performance when facing
clean data. Therefore, we hope the model can not only withstand
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adversarial attacks, but also correctly process clean data. The ideal
scenario is to use the model with added noise on the identifiers
when facing adversarial attacks, and use the original model when
facing clean data. In other words, we want to integrate these two
capabilities, which is why we want to introduce DML. As show in
Figure 1, we leverage DML to enable the model that can handle
noisy data and the model that handle clean data learn from each
other, the goal is to achieve the effect of being able to both resist
adversarial attacks and correctly fit clean data.

3 APPROACH
3.1 Overview
In this section, we propose MARVEL to against various adversar-
ial attacks. MARVEL improves robustness by working together
with three modules included the Hidden Space Data Augmenta-
tion (HidDA, Section 3.2), the Mutual Learning Adversarial Train-
ing (MutAT, Section 3.3), and the Mutual Learning Feature Fusion
(MutFF, Section 3.4). Figure 2 illustrates their functionality and the
overall workflow is as follows:

1. HidDA: performs data augmentation by adding noise to the
high-dimensional embedding space of the code. Then, these
noisy data and original data will be fed into the MutAT.

2. MutAT: introduces two models with the same structure
- one receives original data, and the other receives noisy
data for adversarial training, and the two models learn the
internal parameters of each other.

3. MutFF: integrates the outputs of two models in the MutAT
to perform downstream tasks.

In the following, we will elaborate on these modules in detail.

3.2 Hidden Space Data Augmentation
The core idea of adversarial training is to improve the robustness
of a model by training it with adversarial examples. These adver-
sarial examples can be small perturbations to the input data or
specific injections into the source code. Many researchers intro-
duce [49, 56, 62, 63] inconsistent identifier names, redundant dead
code, or other common errors in the original code as adversarial
examples. The aforementioned examples, however, often fail to
comprehensively simulate real-world errors and merely result in
limited enhancements in robustness.

Our intuition is that all adversarial example aims to inject ad-
ditional perturbations into the model’s latent space, which can be
mathematically regarded as minor adjustments to both the model
parameters and input vectors, therefore, we can simulate complex
real-world noise by directly adding noise to the embedding vectors.
Based on this idea, we design a HidDA, which adaptively gener-
ates Gaussian noise based on the weights of internal parameters
within the DCM and introduces it into the word embedding layer.
Subsequently, we feed the noisy data into the DCMs for training to
enhance their robustness.

Specifically, given a code snippet, we tokenize code snippets
into multiple sub-word sequences Q = {𝑤𝑖 }𝑛𝑖=1 using Byte Pair
Encoding Tokenizer (BPE) [47], subsequently, this sequence will be
encoded into a high-dimensional embedding space 𝐸 = {𝑒𝑖 }𝑛𝑖=1 ∈
R𝑛×𝑑 , where 𝑑 is the dimension of embedding space. In this way,

we can associate each sub-word with an embedding vector one by
one.

The first step MARVEL needs to take is to generate initial noise
on the embeddings to perform hidden space data augmentation. To
ensure the semantic of the code remains unchanged, MARVEL only
adds noise to the embedding vectors corresponding to all identifiers.
We believe that this can better simulate the process of generating
adversarial examples by continuously modifying identifiers.

MARVEL uses attention information to initialize the noise for
the word embeddings corresponding to each identifier. Most ex-
isting state-of-the-art DCMs utilize attention mechanisms, which
often consist of multiple attention layers. In each attention layer,
attention weights are calculated for each token, which can reflect
the importance of each token to the model’s output. For the conve-
nience of presentation, an identifier list E = {𝑒1, 𝑒2, ..., 𝑒𝑚} can be
obtained for each code snippet Q, and the list of attention layers
contained in a codemodelM can be denoted asH = {ℎ1, ℎ2, ..., ℎ𝑛},
the attention weights assigned to the identifier 𝑒𝑖 by the attention
layer ℎ 𝑗 are represented as𝑤𝑖 𝑗 . Considering that an identifier may
appear multiple times in a code snippet, we take the average of its
attention weights at different positions as𝑤𝑖 𝑗 .

MARVEL uses attention in a way that assigns larger noise to
identifiers with higher attention weights. For each identifier 𝑒𝑖 ,

calculate the attention score 𝑠𝑖 =
Σ𝑛
𝑗=1𝑤𝑖 𝑗

𝑛 , where 𝑛 is the number of
attention layers. We use this to assign a new weight 𝑟𝑖 = 𝑚 ·𝑠𝑖

Σ𝑚
𝑖=1𝑠𝑖
+ 1

to each identifier 𝑒𝑖 , adding 1 is intended to amplify the initial noise.
We first generate random Gaussian noise 𝑧′ ∈ R1×𝑑 , and initialize
the noise 𝛿𝑖 = 𝑧′ ·𝑟𝑖 for each identifier 𝑒𝑖 based on 𝑠𝑖 . The generated
noise will be added to the code embedding representations, in order
to achieve hidden space data augmentation. It’s worth noting that
MARVEL only adds noise to identifiers and ensure that the noise
for the same identifier at different positions is the same.

3.3 Mutual Learning Adversarial Training
Introducing noise for training may cause the output of the DCMs to
deviate from expectations and lead to a decrease in accuracy. There-
fore, we design MutAT to improve robustness while maintaining
accuracy.

The workflow of MutAT is shown in the top of Figure 2. We set
two identical models, where one model receives noisy data and
performs adversarial training, while the other receives the original
clean data. And, the two models learn the model parameters of
each other during training. The detailed process is illustrated by
Algorithm 1.

DefiningM𝑎 as the model that undergoes adversarial training
during the training process. Adversarial training can be defined as a
min-max optimization problem, where the model aims to minimize
the expected loss on the entire dataset, even in case of encountering
adversarial samples with maximum disturbance [24, 41]. It can be
formulated as follows:

𝑚𝑖𝑛
𝜃
E(𝑋,𝑦)∼D [𝑚𝑎𝑥L(M𝜃 (A(𝑋 )), 𝑦)] (1)

where 𝑋 and 𝑦 are the input data and its corresponding label sam-
pled from datasetD, L is the loss function,M𝜃 is the target model
with parameter 𝜃 and A is the way to add disturbance to the input
𝑋 . In MARVEL, A is defined as adding noise on the continuous
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Figure 2: The overall workflow of MARVEL.

embedding space, we first generate initial noise which has been
provided in section 3.2, and then update the noise during the ad-
versarial training. So the adversarial training target can be defined
as follows:

𝑚𝑖𝑛
𝜃
E(𝑋,𝑦)∼D

[
𝑚𝑎𝑥
| |𝛿 | |𝐹 ≤𝜖

L(M𝜃 (T (𝑋 ) + 𝛿), 𝑦)
]

(2)

whereT the encoder that transforms the input𝑋 into an embedding
vector. For every single input, we are supposed to find the optimal
𝛿 ∈ R1×𝑑 to maximize the inner part of Eq. 2, which is a non-
concave optimization problem. Inspired by the Project Gradient
Descent (PGD)[41] which has been proven effective in addressing
this issue, MARVEL uses a gradient-driven approach to adaptively
update the initially generated noise 𝛿 based on the model’s internal
parameter information. This process can be represented as:

𝑔(𝛿𝑡 ) = ∇𝛿𝑡L(M𝑎 (T (𝑋 + 𝛿𝑡 )), 𝑦)

𝛿𝑡+1 = Π | |𝛿 | |𝐹 ≤𝜖
(
𝛿𝑡 + 𝜇

𝑔(𝛿𝑡 )
| |𝑔(𝛿𝑡 ) | |𝐹

) (3)

where Π is a projecting function that constrain 𝛿 within the 𝜖-ball,
∇ is a function that compute the gradient based on the loss and 𝑡
represents the number of iterative computation steps, i.e. during
the adversarial training process, the gradient will be repeatedly
calculated and the noise 𝛿 will be updated. This process will be
repeated 𝐾 times, where 𝐾 is a hyper-parameter representing the
number of steps for gradient accumulation.

The purpose of adversarial training is to enable the model to
learn the capability of being resistant to disturbances. However,
solely through this process, the model can easily suffer from re-
duced accuracy. Therefore, we introduce DML, setting up another
modelM𝑐 that only receives original clean data, letM𝑐 andM𝑎

learn from each other. Our basic idea is thatM𝑎 can learn correct
classification capability fromM𝑐 , whileM𝑐 can learn the robust-
ness against disturbances fromM𝑎 . We explain our approach using
a simple classification problem, in the training process of a single
model, the objective function is defined as the cross entropy error
between the true label and the predicted probability distribution:

𝐿M = −
𝑁∑︁
𝑖=1

𝑀∑︁
𝑚=1

𝐼 (𝑦𝑖 ,𝑚)𝑙𝑜𝑔(𝑝𝑚M (𝑥𝑖 )) (4)

where 𝑝𝑚M (𝑥𝑖 ) represents the probability of the i-th data on the
m-th classification by the modelM and 𝐼 is an indicator function
defined as follows:

𝐼 (𝑦𝑖 ,𝑚) =
{

1 𝑦𝑖 =𝑚

0 𝑦𝑖 ≠𝑚
(5)

BothM𝑎 andM𝑐 contain this objective function in their training
process. In order to enableM𝑐 to learn the robustness capability
fromM𝑎 , DML allowsM𝑎 to provide the probability distribution
ofM𝑎 on the input data as training experience forM𝑐 . Following
[66], we use the KL Divergence to measure the difference between
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Algorithm 1Mutual Learning Adversarial Training
Inputs:
D = {(𝑥,𝑦)}: training sets;
𝜂: learning rate;
𝐾 : ascent steps;
𝜇: adversarial learning rate;
𝜇: training epoch;

Outputs:
Θ𝑎 : modelM𝑎 ’s parameters;
Θ𝑐 : modelM𝑐 ’s parameters

1: for 𝑒𝑝𝑜𝑐ℎ = 1, 2, ..., 𝑁 do
2: for mini-batch B ⊂ D do
3: for 𝑖 = 1, 2, ...,𝑚 do
4: Initial noise 𝛿𝑖
5: end for
6: for 𝑡 = 1 to 𝐾 do
7: 𝑝𝑎 ←M𝑎 (𝑥 + 𝛿), 𝑝𝑐 ←M𝑎 (𝑥)
8: Θ𝑎 ← Θ𝑎 + 𝜂

𝜕LΘ𝑎
𝜕Θ𝑎

9: for 𝑖 = 1, 2, ...,𝑚 do
10: 𝑔𝑖 ← ∇L(M𝑎 (𝑥𝑖 + 𝛿), 𝑦𝑖 )
11: 𝛿𝑖 ← 𝛿𝑖 + 𝜇 𝑔𝑖

| |𝑔𝑖 | |𝐹
12: end for
13: end for
14: Θ𝑎 ← Θ𝑎 + 𝜂

𝜕LΘ𝑎
𝜕Θ𝑎

15: 𝑝𝑎 ←M𝑎 (𝑥 + 𝛿), 𝑝𝑐 ←M𝑎 (𝑥)
16: Θ𝑐 ← Θ𝑐 + 𝜂

𝜕LΘ𝑐
𝜕Θ𝑐

17: end for
18: end for

the probability distributions of the two models:

𝐷𝐾𝐿 (𝑝M𝑎
| |𝑝M𝑐

) =
𝑁∑︁
𝑖=1

𝑀∑︁
𝑚=1

𝑝𝑚M𝑎
(𝑥𝑖 )𝑙𝑜𝑔

𝑝𝑚M𝑎
(𝑥𝑖 )

𝑝𝑚M𝑐
(𝑥𝑖 )

(6)

We also hope thatM𝑎 can learn the correct classification capability
fromM𝑐 , soM𝑐 also needs to provide its probability distribution
as learning experience forM𝑎 . Ultimately, the loss functions of
M𝑎 andM𝑐 will be respectively defined as:

LM𝑎
= (1 − 𝛼)𝐿M𝑎

+ 𝛼𝐷𝐾𝐿 (𝑝M𝑐
| |𝑝M𝑎

)
LM𝑐

= (1 − 𝛼)𝐿M𝑐
+ 𝛼𝐷𝐾𝐿 (𝑝M𝑎

| |𝑝M𝑐
) (7)

Where 𝛼 is a hyper-parameter used to control the strength of mu-
tual learning. As 𝛼 increases, the weight of the mutual learning
component in the loss function becomes higher, leading to stronger
mutual learning.

For each training batch,M𝑎 will first receive the data with the
initialized noise added, and update the noise based on the gradient.
Afterwards, bothM𝑎 andM𝑐 will update their output probability
distributions, and update their model parameters according to the
loss functions defined above.

SinceM𝑎 receives data with noise add to the identifiers, this
effectively weakens the influence of the original identifier names
on the results, making the model no longer classify the input based
on the identifiers names. Therefore, to maintain this effect and data
consistency, unlike general adversarial training, we add noise to
input data ofM𝑎 in both the training and inference stages, but

only use gradient to update the noise during the training stage. In
contrast,M𝑐 only receives clean data.

3.4 Mutual Learning Feature Fusion
After completing MutAT and obtaining the two robust modelsM𝑐

andM𝑎 , both of these models have learned robust code represen-
tations through the MutAT process. In order to better integrate the
performance of the two models and apply it to specific downstream
tasks, we design MutFF to fuse the code representations obtained
from the two models.

Our intuition is to simultaneously consider the code features
under the two different input modes and have them jointly partic-
ipate in the model’s output decision. Due to the fact that model
M𝑎 received data with added noise during the MutAT process, its
learned code representation has better robustness. On the other
hand, modelM𝑐 received clean data, so its code representation
has better accuracy. In the code tasks presented in this paper, all
code representations need to be fitted to a classifier with the true
labels. Therefore, a method that can leverage both types of code
representations is to concatenate the two code representations and
then feed them into the classifier, in order to enable the model to
capture information from both dimensions when facing the same
input.

Specifically, MutFF takes the last layer hidden state distributions
𝑆M𝑎

and 𝑆M𝑐
fromM𝑎 andM𝑐 , i.e., code representation in Fig-

ure 2, directly concatenates them to form 𝑆 ′, this process can be
defined as:

𝑆 ′ = [𝑆M𝑐
, 𝑆M𝑎

] ∈ R2×𝑑 (8)

where [, ] represents the vector concatenation operation and 𝑑
represents the dimension of code representation. AndMutFF sets up
a classifier C′ with the same structure as the modelM𝑎 andM𝑐 ’s
classifier butwith a different input dimension, in order to recalculate
the probability distribution as 𝑝′ = C′ (𝑆 ′). In this process,M𝑎 also
needs to receive data with added noise, which is calculated from
3.2, and no longer update based on the gradient. Additionally, the
model parameters ofM𝑎 andM𝑐 need to be frozen as they have
already been trained in section 3.3, and only the final C′ is trained
separately on the training set. The final C′,M𝑎 andM𝑐 are then
used as the ultimate model obtained by MARVEL.

4 EXPERIMENTAL SETUP
In this paper, we evaluate MARVEL by answering the following
research questions (RQs):
RQ1: Does MARVEL improve the robustness of existing DCMs

and how does MARVEL affect their accuracy?
RQ2: How do the different modules in MARVEL impact its overall

performance?
RQ3: How do different parameter settings affect the performance

of MARVEL?

4.1 Subjects
To provide a sufficient evaluation of our method, we employed five
widely used datasets that encompass three popular programming
languages (C, Java, and Python), covering four different code clas-
sification tasks (Authorship Attribution, Vulnerability Detection,
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Table 1: Statistics of ours used datasets and models

Dataset Train/Val/Test Class Language Model Acc.

Authorship
Attribution 528/-/132 66 Python

CodeBERT 81.81%
GCBERT* 77.27%
UniXCoder 86.36%

Vulnerability
Detection 21,854/2,732/2,732 2 C

CodeBERT 64.39%
GCBERT 62.15%
UniXCoder 65.74%

Defect
Prediction 27,058/-/6,764 4 C/C++

CodeBERT 83.06%
GCBERT 81.34%
UniXCoder 85.85%

FC-Java250** 48,000/11,909/15,000 250 Java
CodeBERT 97.06%
GCBERT 97.95%
UniXCoder 98.13%

FC-Python800 153,600/38,400/48,000 800 Python
CodeBERT 97.93%
GCBERT 98.52%
UniXCoder 98.54%

* GCBERT is short for GraphCodeBERT.
** FC is short for Functionality Classification.

Defect Prediction and Functionality Classification) in our evalua-
tion.

Authorship attribution aims to correctly identify the author
of a given code snippet. We use the Google Code Jam (GCJ) dataset
[6], which collects the code submitted by different participants in
the Google Code Jam challenge, the dataset contains code snippets
and their corresponding author IDs, with a total of 660 Python
files submitted by 66 authors. We divided the dataset into an 80%
training set and a 20% testing set following prior work [49, 56].
Vulnerability detection is a binary classification task to iden-
tify whether a code snippet contains vulnerabilities or not. We use
the dataset that was proposed by Zhou et al. which contains two
C projects [67]. This dataset is also part of the CodeXGLUE [40]
benchmark, we follow the CodeXGLUE division of the training,
validation, and test sets for this dataset. Defect prediction aims to
predict whether a code snippet has defects and identify the specific
type of defect it exhibits. We use the CodeChef dataset [1] following
existing works [49, 62], which contains 33,822 C/C++ codes, and
categorized them into four classes: OK, Wrong Answer, Time Limit
Exceeded, and Running Error. Functionality classification aims
to classify given code snippets based on the problems that they can
solve. We use the CodeNet dataset [46] proposed by IBM for this
task, which is a large-scale code dataset containing 14 million pro-
gramming projects across 55 programming languages. Specifically,
we selected the Java250 and Python800 subsets from CodeNet for
the experiments, which consist 250 classes of Java code and 800
classes of Python code, respectively.

As for the code models, we employed three state-of-the-art pre-
trained DCMs, i.e., CodeBERT [20], GraphCodeBERT [27], and
UniXCoder [26], which are mentioned in Section 2.1. Table 1 shows
the statistics of our used datasets and models, where Acc. represents
the accuracy of the models after fine-tuning on the correspond-
ing datasets, i.e., without applying any robustness improvement
methods.

4.2 Measurements and Baselines
Our work primarily focuses on enhancing the robustness of DCMs,
specifically their ability to withstand adversarial attacks. Therefore,

we use state-of-the-art attack techniques to attack DCMs enhanced
by MARVEL instead of creating a transformed test set for each
dataset like the previous works [16, 21, 61]. So we chose the widely-
used ASR [49, 56] as our evaluation metric. Given a victim code
modelM and a dataset X, where each element 𝑥 ∈ X is a code
snippet that could be correctly classified byM and has at least one
local variable, which means attackers can leverage attack methods
that involve substituting variable names, then the ASR of an at-
tack technique can be defined as { |𝑥 |𝑥∈X∧M(𝑥

′ )≠M(𝑥 ) } |
|X | , where

𝑥 ′ is the adversarial example generated by attackers. A lower ASR
indicates that a model has better robustness.

In our study, we use three state-of-the-art attack techniques
ALERT [56], MHM [63] and CODA [49] as they have demonstrated
high ASR in attacking the current pre-trained DCMs. By evaluating
the reduction in ASR, we can determine the effectiveness of our
method in improving DCM’s robustness.

We use CREAM [21] and SPACE [36] as our baselines. CREAM
uses counterfactual reasoning framework to eliminate misleading
information of identifiers to improve model robustness and have
demonstrated excellent efficacy, while SPACE is able to boost the
robustness of DCMs via a semantic-preserving adversarial train-
ing. Both CREAM and SPACE have been proven to be effective in
improving the robustness of DCMs. However, GraphCodeBERT
incorporates DFG as part of its input, while CREAM splits the input
code into sequences containing only identifiers and code sequences
without identifiers, resulting in the inability to capture the DFG.
Hence, we do not conduct experiments using CREAM on Graph-
CodeBERT.

4.3 Implementations
We implemented MARVEL in Python and utilized tree-sitter [2] to
extract identifiers from code snippets.We set the parameters𝛼 = 0.3
and 𝐾 = 3 in MARVEL by conducting a preliminary experiment,
and we discuss the influence of these parameters in Section 5.3.
The experiments related to CodeBERT and GraphCodeBERT were
conducted on an Ubuntu 16.04 server with Intel(R) Xeon(R) E5-
2683 v4 @2.10GHz CPU, and NVIDIA TITAN RTX GPU, and the
experiments related to UniXCoder were conducted on an Ubuntu
20.04 server with Intel(R) Xeon(R) Platinum 8352V @2.10GHz CPU,
and NVIDIA RTX 4090 GPU.

5 EXPERIMENTAL RESULTS
5.1 RQ1: Evaluation on the Robustness of

MARVEL
We applied three state-of-the-art adversarial attack algorithms (i.e.,
ALERT, MHM, and CODA) on the test sets of five datasets for three
DCMs (i.e., CodeBERT, GraphCodeBERT and UniXCoder) that in-
corporated the MARVEL. We also compared the MARVEL with two
baselines, CREAM and SPACE. The reduction in the ASR of these
attack methods serves as a quantitative indicator to measure their
robustness, a lower ASR indicates better robustness. The full results
illustrated in Table 2. Based on these results, we have the following
observations: Firstly, MARVEL can significantly improve the
robustness of DCMs across all 45 tasks. Specifically, the original
CodeBERT, GraphCodeBERT, and UniXCoder achieved an average
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Table 2: Comparison results of ASR results of state-of-the-art adversarial attacks on attacking three models after applying
MARVEL, CREAM, and SPACE. (AA is short for Authorship Attribution, VD is short for Vulnerability Detection, and DP is
short for Defect Prediction)

Approach
AA VD DP FC-Java250 FC-Python800

ALERT MHM CODA ALERT MHM CODA ALERT MHM CODA ALERT MHM CODA ALERT MHM CODA

CodeBERT 37.96% 68.52% 84.91% 58.70% 71.11% 97.78% 73.34% 47.99% 68.24% 33.96% 39.41% 59.45% 54.28% 50.05% 37.76%
+CREAM 26.89% 55.46% 41.88% 56.76% 73.18% 95.49% 62.51% 45.39% 54.59% 16.03% 29.60% 38.98% 26.02% 31.33% 19.83%
+SPACE 37.84% 70.27% 84.40% 61.58% 84.86% 96.99% 75.50% 68.97% 61.94% 30.83% 33.10% 55.21% 53.22% 48.33% 40.48%
+MARVEL 9.17% 12.04% 13.08% 30.01% 69.88% 80.17% 38.13% 45.38% 54.35% 11.28% 17.68% 10.99% 13.95% 35.08% 11.77%
GCBERT 61.76% 75.49% 92.86% 80.58% 87.40% 98.52% 83.12% 64.81% 58.59% 35.82% 26.76% 53.82% 54.78% 46.25% 34.32%
+SPACE 76.47% 83.33% 90.00% 75.96% 84.34% 96.54% 83.18% 70.67% 60.53% 31.83% 25.59% 52.35% 56.91% 55.02% 41.11%
+MARVEL 28.57% 34.29% 41.75% 49.28% 68.32% 87.56% 51.80% 45.83% 35.45% 13.42% 3.67% 5.71% 22.79% 17.49% 7.73%
UniXCoder 45.61% 55.31% 69.64% 63.84% 80.23% 91.93% 74.92% 54.71% 65.19% 28.60% 38.79% 54.89% 45.51% 39.12% 28.62%
+CREAM 30.51% 51.69% 51.72% 44.58% 75.86% 95.34% 50.44% 53.35% 49.67% 12.29% 18.28% 17.93% 31.56% 30.98% 17.56%
+SPACE 63.63% 77.27% 92.59% 63.14% 86.55% 97.03% 84.89% 76.98% 66.65% 27.45% 33.65% 52.89% 47.25% 41.18% 31.13%
+MARVEL 11.50% 15.18% 14.16% 44.24% 66.53% 87.57% 34.88% 46.17% 50.67% 9.94% 5.58% 4.46% 11.67% 20.27% 5.40%

Table 3: Comparison results of the test set accuracy for the
three models after applying MARVEL, CREAM, and SPACE.

Approach AA VD DP Java250 Python800

CodeBERT 81.82% 64.39% 83.06% 97.06% 97.93%
+CREAM 90.15% 64.60% 84.06% 99.14% 98.95%
+SPACE 84.85% 64.57% 81.99% 98.51% 98.60%
+MARVEL 82.58% 63.18% 84.27% 95.59% 96.79%
GCBERT 77.27% 62.15% 81.34% 97.95% 98.52%
+SPACE 78.79% 64.24% 82.69% 97.95% 98.72%
+MARVEL 80.30% 62.66% 83.59% 97.69% 98.25%
UniXCoder 86.36% 65.74% 85.85% 98.13% 98.54%
+CREAM 89.39% 64.82% 84.57% 98.83% 98.91%
+SPACE 83.33% 65.30% 82.87% 98.61% 99.02%
+MARVEL 86.36% 65.30% 86.62% 97.23% 97.92%

ASR of 58.90%, 63.65%, and 55.79% across three datasets and three
attack algorithms. After being strengthened by MARVEL, their av-
erage ASR was reduced to 30.20%, 34.24%, and 28.55%, respectively,
with a decrease of 28.70%, 29.41%, and 27.24%.

Secondly, the robustness improvement of MARVEL sur-
passes that of the two baselines. Specifically, the average ASR
for CREAM-enhanced CodeBERT and UniXCoder are 44.93% and
42.12% respectively in the 30 related tasks of CREAM. Our MARVEL
outperforms CREAM in the 28 tasks, in which reducing average ASR
by 16.05%, and 14.61%. Additionally, the average ASR for SPACE-
enhanced CodeBERT, GraphCodeBERT and UniXCoder are 60.23%
, 65.59%, and 62.82% respectively in the all 45 tasks. Our MARVEL
also surpasses SPACE in all 45 tasks, with ASR reduced by 30.04%,
31.34%, and 34.27%.

In addition, to examine the impact of MARVEL on the intrinsic
performance of the models, we also evaluated the accuracy of the

MARVEL-based models on the original test sets, with the results
illustrated in Table 3. Based on these results, we can conclude that
MARVEL can effectively maintain the intrinsic performance
of DCMs, and even improve the model performance on cer-
tain tasks. For example, on the DP task, MARVEL boosted the
performance of CodeBERT, GraphCodeBERT, and UniXCoder by
1.19%, 2.25%, and 0.77% respectively, even outperforming the two
baselines CREAM and SPACE. For the AA task, although the per-
formance improvement capability of MARVEL is weaker compared
to CREAM and SPACE, it still achieved performance gains relative
to the original CodeBERT and GraphCodeBERT models. However,
for the Java250 and Python800 datasets, we unfortunately found
that MARVEL caused a certain degree of performance loss. For
example, on the Java250 dataset, MARVEL led to 1.47%, 0.26%, and
0.9% losses for CodeBERT, GraphCodeBERT, and UniXCoder respec-
tively. This may be because the Java250 and Python800 datasets are
larger, and the limited number of iteration rounds is not enough to
support MARVEL achieving better results. Nevertheless, MARVEL
can achieve substantial robustness improvements at the cost of only
minor performance loss, which we believe is a more critical aspect
in the practical application of DCMs.

Answer to RQ1: MARVEL can significantly improve the
robustness of DCMs across all 45 tasks while maintaing the
intrinsic performance of the models. Compared to the base-
lines, MARVEL achieved the best performance on 43 out of
the 45 tasks, further reducing ASR by an additional 15.33%
and 31.88%.

5.2 RQ2: Ablation Study
We further conducted ablation studies to validate the effectiveness
of the three key modules in MARVEL that are fundamentally differ-
ent from existing work, i.e., HidDA, MutAT and MutFF. We selected
the AA dataset to experiment on CodeBERT, GraphCodeBERT, and
UniXCoder, in order to examine the impact of different variants
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Table 4: Ablation Study Results on AA Dataset.

Variants
CodeBERT GraphCodeBERT UniXCoder

Accuracy ALERT MHM CODA Accuracy ALERT MHM CODA Accuracy ALERT MHM CODA

Original 81.82% 37.96% 68.52% 84.91% 77.27% 61.76% 75.49% 92.86% 86.36% 45.61% 53.51% 69.64%
+MARVEL 82.58% 9.17% 12.04% 13.08% 80.30% 28.57% 34.29% 41.75% 86.36% 11.50% 15.18% 14.16%
-w/o mutual 78.79% 20.00% 16.19% 13.86% 68.94% 40.45% 42.05% 43.33% 79.55% 64.86% 51.35% 44.24%
w/ both noise 77.27% 7.55% 18.87% 13.46% 71.97% 38.95% 51.58% 44.08% 80.30% 12.15% 14.95% 14.29%
w/ both clean 80.30% 41.18% 67.65% 73.00% 82.58% 69.72% 82.57% 88.79% 87.12% 85.71% 93.88% 88.42%
-w/o contact-M𝑎 81.06% 8.41% 15.89% 14.29% 74.24% 33.33% 41.84% 32.98% 81.06% 18.87% 21.15% 16.35%
-w/o contact-M𝑐 82.58% 15.60% 28.44% 39.25% 82.58% 50.46% 68.81% 80.37% 87.12% 24.35% 33.04% 38.94%

on the model performance and their robustness against the three
attack methods. The experimental results are presented in Table 4.

1) HidDA and MutAT: MARVEL includes a mutual learning-
based adversarial training process, where one model receives clean
data while the other receives noisy data for hidden space data aug-
mentation and performs adversarial training. Simultaneously, the
two models learn from each other. To investigate the effectiveness
of the two modules, we designed three variants:
• w/o mutual: we kept only one model during the training
process and removed the mutual learning module, essentially
training just a single model with adversarial training on the
embedding.
• w/ both noise: both models in the mutual learning process
received noisy data and underwent adversarial training.
• w/ both clean: both models in the mutual learning process
received only clean data, without HidDA and any adversarial
training, essentially a pure mutual learning setup.

FromTable 4, we can observe that these three variants all suffered
from different degrees of performance degradation. Specifically,
compared to MARVEL, the w/o mutual variant incurred a loss in
the model’s original accuracy, and its improvement in the model’s
robustness was also weaker. For example, for the CodeBERT model,
the w/o mutual variant saw a 0.76% decrease in accuracy, and the
ASR against ALERT, MHM, and CODA increased by 10.83%, 4.15%,
and 0.78% respectively, compared to MARVEL. As for the w/ both
noise variant, it can achieve improvements in the robustness com-
pared to the original model, and in some cases even perform better
than MARVEL (e.g., compared to MARVEL, the ASR for the MHM
algorithm on UniXCoder was further reduced by 0.23%). This is
because both models receive noisy data, allowing them to simulta-
neously obtain good robustness and more effectively fit the noisy
data. However, due to the lack of learning from clean data, it also
suffers from severe accuracy degradation in almost all cases. The
w/ both clean variant, on the other hand, can maintain the model’s
accuracy and even improve it on some models (e.g., 5.31% and 0.76%
increases for GraphCodeBERT and UniXCoder respectively com-
pared to the original). However, its improvement in the robustness
is very marginal. These results demonstrate that compared to adver-
sarial training alone, the approach of combining mutual learning
can effectively improve the model’s robustness. By setting different
inputs for the two models, where one receives clean data and the

other receives noisy data, the two model can learn to fit clean data
and defend against noise, respectively. This allows the model to
withstand adversarial attacks while maintaining its own accuracy.

2) MutFF: In Section 3.3, we had obtained two models M𝑎

and M𝑐 , and we extracted the code representations from these
two models and concatenated them, feeding the concatenated rep-
resentation into a classification model in Section 3.4. To validate
the effectiveness of this module, we removed MutFF and designed
two variants: w/o contact-M𝑎 and w/o contact-M𝑐 . Essentially,
these are theM𝑎 andM𝑐 obtained in Section 3.3, but we fed their
respective code representations directly into the classifier to obtain
the classification results, without concatenating them.

From the results in Table 4, we can observe that the w/o contact-
M𝑎 variant has relatively better robustness, but with some accuracy
loss. On the other hand, the w/o contact-M𝑐 variant can maintain
the model’s original accuracy, but its robustness is slightly weaker
than w/o contact-M𝑎 . The MARVEL, by concatenating the repre-
sentations from these two models, solves this trade-off. MARVEL
harnesses the advantages of both models, it can synergistically
leverageM𝑐 ’s capability to fit clean data andM𝑎 ’s robustness to
input perturbations.

Answer to RQ2: The different modules in MARVEL, i.e.,
HidDA, MutAT, and MutFF, all have a positive impact on
MARVEL’s overall performance, and the rationality of their
design has been demonstrated.

5.3 RQ3: Evaluation on the Parameter Settings
We analyzed the impact of two key hyper-parameters, 𝐾 and 𝛼
introduced in Section 3.3, of MARVEL on the model’s accuracy
and robustness, as these two parameters have the most significant
influence on the results. We conducted experiments using the AA
dataset as an example. The results are shown in Figure 3.

The parameter 𝐾 . The parameter 𝐾 determines the number
of gradient update steps for the noise, where K=1 means that the
noise is not updated according to the gradient. A larger K means a
higher intensity of added noise and more adversarial training. We
set 𝐾 = {1, 2, 3, 4, 5} to investigate the impact of different values
of 𝐾 on the results. As shown in Figure 3(g), 3(b) and 3(c), we can
observe that for all tasks and models, the capability to withstand
adversarial attacks when 𝐾 > 1 is stronger than when 𝐾 = 1. That
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Figure 3: Hyper-Parameter Analysis. The left and right vertical axes represent the model’s accuracy on the test set and the ASR
of the three attack algorithms, respectively.

is, the gradient-driven noise update strategy can effectively improve
the model’s robustness. We also notice that as the𝐾 value increases,
it may lead to a loss in model accuracy. This is likely because as the
number of noise updates increases, the model’s decision boundary
expands, making the model more prone to overfitting to the noise,
which in turn reduces the model’s generalization capability.

The result shown in Figure 3 demonstrates our experimental re-
sults on the AA dataset. Based on these results, we can observe that
setting 𝐾 = 3 or 𝐾 = 4 can exhibit better performance. However,
MARVEL is a general framework that can be applied to different
code models and datasets. After evaluating all five datasets and
three models, we determine that generally 𝐾 = 3 is the optimal
choice. Therefore, we set 𝐾 = 3 as the default setting for our MAR-
VEL framework.

The hyper-parameter 𝛼 . The hyper-parameter 𝛼 represents
the strength of the mutual learning process, which determines how
much information the model obtains from the mutual learning pro-
cess. We experimented with 𝛼 = {0.1, 0.3, 0.5, 0.7, 0.9} , as shown
in Figure 3(d), 3(e) and 3(f), as 𝛼 increases, the model’s robustness
gradually improves, but its inherent accuracy also decreases. A
larger 𝛼 means a stronger mutual learning process, with a smaller
proportion of fitting the original labels. Through the mutual learn-
ing process, the model learns more noise-resistant capabilities, but
this also weakens its performance on fitting the original data. In
this work, we set 𝛼 = 0.3, as it can improve the model’s robustness
while reasonably preserving its accuracy.

Answer to RQ3:As𝐾 and 𝛼 increase, MARVEL’s robustness
against adversarial attacks is enhanced, but it results in a
slight loss of accuracy. We balanced the model’s robustness
and accuracy to determine the default settings for these
hyper-parameters.

6 DISCUSSION
6.1 The Time and Memory Cost
Due to the fact that the training stage of MARVEL requires simul-
taneous updates of the parameters for the two models, as well as
gradient-based iterative updates of the noise, and the inference
stage of MARVEL also necessitates obtaining the code represen-
tations from the two models and concatenating them, MARVEL
incurs certain time and memory cost compared to not applying
MARVEL (i.e., only fine-tuning on the dataset).

In our experiments, the training and inference time of MARVEL
were about 4 times longer compared to only fine-tuning, while
the memory overhead was around twice that of fine-tuning alone.

As the value of 𝐾 increases, the number of iterations for updating
the noise also increases, leading to longer training time. Taking
the results of CodeBERT on the AA dataset as an example, the
training time when 𝐾 was set to 1, 3, 5 was 3.47, 5.7, and 8 times
longer than the time required for only fine-tuning, respectively. We
traded off some time and memory overhead to achieve better model
robustness. In the future, we will explore more efficient ways to
improve model robustness.

6.2 Threats to Validity
The main threat to the internal validity lies in the parameter set-
tings of MARVEL. In this work, we studied the two most critical
parameters (i.e., 𝐾 and 𝛼 as described in Section 5.3). Figure 3
show the impact of 𝐾 and 𝛼 on the performance. To balance the
model’s robustness and accuracy, we set 𝐾 to 3 and 𝛼 to 0.3 as the
default configuration for MARVEL. Another internal threat is the
implementation of MARVEL. To mitigate this threat, we carefully
conducted code reviews and released artifacts that can be replicated
and used in practice.

The main threat to the construction validity lies in the measure-
ments used in the experiments. To mitigate this threat, we employ
evaluation metrics that have been widely used in prior works, i.e.,
accuracy and attack success rate.

The main threat to the external validity lies in the subjects that
we selected for the experiments. To mitigate this threat, we used
three different DCMs, evaluated them on five widely-used datasets
covering three popular programming languages, and employed
three attack algorithms to assess the robustness. Besides, we have
extended the two baselines to the models and datasets used in
this work, and the correctness of this extension may also pose a
potential threat to the validity.

7 RELATEDWORK
To evaluate and improve the performance and robustness of DCMs,
researchers have made many efforts, which can be categorized into
two types: generating adversarial examples to reveal the defects
of DCMs, and proposing advanced frameworks to improve the
performance and robustness of the models.

7.1 Adversarial Attack on Code
Deep learning systems have been proven to be vulnerable to adver-
sarial attacks[12, 15, 18, 22, 23]. Adversarial attacks aim to generate
adversarial examples by adding slight perturbations to the original
inputs of DNNs to mislead them into producing incorrect outputs.
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Recently researchers proposed many techniques to generate adver-
sarial examples specifically targeting DCMs [49, 56, 62–64]. One
purpose of conducting adversarial attacks is that the generated
adversarial samples can be added to the training set to retrain the
model, in order to improve the robustness of the model (at the
data-level).

There are many adversarial example generation techniques for
DCMs. Yefet et al. proposed DAMP [57] that changes variable names
using gradient information. Zhang et al. proposedMHM [63], which
is a Metropolis-Hastings sampling-based identifier renaming tech-
nique. Yang et al. proposed ALERT [56], which generates substitutes
that are aware of natural semantics and use genetic algorithms to
perform variable replacement. Tian et al. proposed CODA [49] that
can transform code structure and rename variables considering
code structure differences and identifier differences. Zhang et al.
proposed RNNS [64], which use representation nearest neighbor
search to find potential adversarial substitutes. All these techniques
have demonstrated strong attack capabilities against DCMs. In this
paper, our purpose is to improve the model’s ability to resist these
adversarial attacks, and we employ MHM, ALERT and CODA as
attack techniques to evaluate our approach.

7.2 Performance & Robustness on Code Models
To improve the performance or robustness of DCMs, researchers
have also made great efforts. Besides the two baselines CREAM
[21] and SPACE [36] that have already been mentioned in this
paper, Dong et al. proposed MixCode [16], which could enhance
code classification by mixup-based data augmentation. Tian et al.
proposed CodeDenoise [50] that could on-the-fly improve code
model’s performance via input denoising. Li et al. proposed RoPGen
[37] that could robust code authorship attribution via automatic
coding style transformation. In addition, some works have used
contrastive learning techniques to design new network architec-
tures and loss functions to improve the performance of code modesl
[31, 38, 51, 52].

However, there is still a lack of research that truly focuses on
the robustness of DCMs against the perturbation of adversarial
examples, i.e., DCM could maintain correct outputs even when
faced with adversarial examples. The ability of the model to defend
adversarial attacksmeans that themodel has high robustness, which
is of great significance in the application of real scenarios. Although
researchers have proposed many techniques to counter adversarial
attacks in other domains of deep learning, based on existing work
[60], these techniques can be categorized into adversarial detecting
[39, 43], input reconstruction [42, 48], network verification [25, 32],
network distillation [45], adversarial training [24, 33] and classifier
robustifying [8]. When it comes to DCMs, a common practice is to
augment the training set by incorporating the generated adversarial
examples and then retraining the model [49, 56, 62], which does not
directly enhance the model’s robustness at the model-level, and this
approach makes it difficult to resist multiple types of adversarial
attacks simultaneously.

Besides, existing works [16, 21, 31, 36–38, 50] primarily focus
on improving the accuracy of DCMs, when it comes to measuring
model robustness, they construct a transformed test set to evalu-
ate the model’s accuracy instead of utilizing state-of-the-art attack

algorithms. While some studies [21, 36] has employed state-of-the-
art attack algorithms such as ALERT to evaluate the robustness
of DCMs by attacking the DCMs, there is still a lack of methods
that can enhance the robustness to input perturbations across mul-
tiple downstream tasks for multiple DCMs. Additionally, there is a
shortage of large-scale experimental validations in this area, which
motivated us to proposed a more powerful robustness enhanced
technique for DCMs, i.e., MARVEL.

8 CONCLUSION AND FUTUREWORK
In this paper, we propose MARVEL, a mutual learning-based frame-
work for enhancing robustness of code models via adversarial train-
ing that can be applied to any DCM that needs to be fine-tuned on a
code dataset. MARVEL improves model robustness while maintain-
ing accuracy through a deep mutual learning approach between
two models. One model is trained on carefully designed noisy in-
puts, while the other model is trained on the original clean data. We
conducted extensive experiments across 5 datasets and 3 models.
The results demonstrate that, compared to the baselines, MARVEL
can significantly reduce the ASR of state-of-the-art attack algo-
rithms, while maintaining the inherent accuracy of the models.
This validates MARVEL’s ability to enhance the robustness of code
models.

In the future, we will explore more efficient methods to improve
the robustness of code models, reducing the time and memory costs.
We will also conduct evaluations on a wider range of downstream
tasks and datasets.
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